[1]Wei, T., Dong, Z.Y., Zhang, C., et al., 2018. Effects of rainwater harvesting planting combined with deficiency irrigation on soil water use efficiency and winter wheat (Triticum aestivum L.) yield in a semiarid area. Field Crop Res, 218: 231-242.
[2]Luo, H.H., Zhang, Y.L., Zhang, W.F. 2016. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54: 65-73.
[3]Wang, X.L., Wang, J.J., Sun, R.H., Hou, X.G., Zhao, W., Shi, J., Zhang, Y.F., Qi, L., Li, X.L., Dong, P.H., Zhang, L.X., Xu, G.W., Gan, H.B., 2016. Correlation of the corn compensatory growth mechanism after post-drought rewatering with cytokinin induced by root nitrate absorption. Agric Water Manage, 166: 77-85.
[4]Maeda Y., Konishi M., Kiba T., et al., 2018. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat Commun, 9: 1376.
[5]Wang, X.L., Guo, X.L., Hou, X.G., Zhao, W., Xu, G.W., Li, Z.Q. 2014. Effects of leaf zeatin and zeatin riboside induced by different clipping heights on the regrowth capacity of ryegrass. Ecol Res, 29: 167-180.
[6]Wang, X.L., Qin, R.R., Sun, R.H., Wang, J.J., Hou, X.G., Qi, L., Shi, J., Li, X.L., Zhang, Y.F., Dong, P.H., Zhang, L.X., Qin, D.H. 2018a. No post-drought compensatory growth of corns with root cutting based on cytokinin induced by roots. Agric Water Manage, 205: 9-20.
[7]Wang X L,Wang J,Li Z Q.Correlation of continuous ryegrass regrowth with cytokinin induced by root nitrate absorption[J].Journal of Plant Research,2013,126(5):685-697.
[8]罗宏海,韩焕勇,张亚黎,等.2013.干旱和复水对膜下滴灌棉花根系及叶片内源激素含量的影响[J].应用生态学报,2013,24(4):1009-1016.
[9]Landrein B., Formosa-Jordan P., Malivert A., et al., 2018. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proceedings of the National Academy of Sciences of the United States of America, 115: 1382-1387.
[10]Cao, X.C., Zhu, C.Q., Zhong, C., et al., 2018. Mixed-nitrogen nutrition-mediated enhancement of drought tolerance of rice seedlings associated with photosynthesis, hormone balance and carbohydrate partitioning. Plant Growth Regul, 84: 451-465.
[11]Fu, Q.L., Clark, I.M., Zhu, J., et al., 2018. The short-term effects of nitrification inhibitors on the abundance and expression of ammonia and nitrite oxidizers in a long-term field experiment comparing land management. Biol Fertil Soils, 54: 163-172.
[12]Srikanthasamy, T., Leloup, J., N’dri, A.B., et al., 2018. Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biol Biochem, 117: 153-163.
[13]Hu, H.W., Macdonald, C.A., Trivedi, P., et al., 2015. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environ Microbiol, 17: 444-461.
[14]Zeno, V., Stefano, C. Nicola, T., et al., 2018. Nitrate induction and physiological responses of two maize lines differing in nitrogen use efficiency: effects on N availability, microbial diversity and enzyme activity in the rhizosphere. Plant Soil, 422: 331-347.
[15]Zhang, J.H., Hussain, S., Zhao, F.T., Zhu, L.F., Cao, X.C., Yu, S.M., Jin, Q.U. 2017. Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere. J Soil Sediment, 18: 1453-1465.
[16]Fisk, L.M., Barton, L., Jones, D.L., et al., 2015. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol Biochem, 88: 380-389.
[17]Zhou, X.H., Zhang, J.P., Li, Y.M., Liu, B., Chu, J.Y., Wang, M.Y., He, Z.L. 2016. Distribution characteristics of ammonia oxidizing microorganisms in rhizosphere sediments of cattail. Ecol Eng, 88: 99-111.
[18]Yin, H.J., Li, Y.F., Xiao, J., et al., 2013. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biol, 19: 2158-2167.
[19]Gopalakrishnan, S., Watanabe, T., Pearse, S.J., et al., 2009. Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms. Soil Sci Plant Nutr, 55: 725-733.
[20]Sun, L., Lu, Y.F., Yu, F.W., et al., 2016. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol, 212: 646-656.
[21]Yang, L.X., Wang, P., Kong, C.H. 2010. Effect of larch (Larix gmelini Rupr.) root exudates on Manchurian walnut (Juglans mandshurica Maxim.) growth and soil juglone in a mixed-species plantation. Plant Soil, 329: 249-258.
[22]Liu, B.Y., Lei, C.Y., Jin, J.H., et al., 2016. Physiological responses of two moss species to the combined stress of water deficit and elevated N deposition (II): Carbon and nitrogen metabolism. Ecol Evol, 6: 7596-7609.
[23]Wang, X.L., Qin, R.R., Sun, R.H., Hou, X.G., Qi, L., Shi, J. 2018b. Effects of plant population density and root induced cytokinin on the corn compensatory growth during post-drought rewatering. Plos One, 13(6): e0198878.
[24]赵雅洁,李周,宋海燕,等.2017.喀斯特地区土壤厚度降低和水分减少对两种草本植物混种后光合的影响.草业科学,34(7) : 1475-1486.